

Fig. 1. Stereoscopic view of (2) with crystallographic atomic labelling.
to which the H being abstracted lies outside the mean plane of the carbonyl group, is 65° for H_{e}, and 39° for H_{a} [in (1) the corresponding values are 45 and 35°, respectively]. The $\cos ^{2} \tau$ dependence of abstraction, suggested by Wagner (1976), would reduce the relative reactivity of H_{e} by a factor of 6 . The angle Δ, between the H in question and the $\mathrm{C}(7)-\mathrm{O}(1)$ bond, is 73° for H_{e}, and 75° for H_{a} [in (1) the equivalent values are 90 and 66°, respectively], quite distorted from the ideal 90°. Abstraction of H_{e} would involve a chair-shaped six-membered transition state, in contrast to the boat geometry in compounds (1).

In compounds (1) H_{β} [$\mathrm{H}(9)$] is in a favourable position for β-abstraction (although no such products are isolated), the $\mathrm{O}(1) \cdots \mathrm{H}_{\beta}$ distance being $2 \cdot 6 \AA$, $\tau_{\beta}=7-13^{\circ}$, and $A_{\beta}=82^{\circ}$. In contrast, in (2), $\mathrm{H}(9)$ is $3.55 \AA$ from $\mathrm{O}(1), \tau_{\beta}$ is 28°, and $\Delta_{\beta}=30^{\circ}$. Another β-H atom, $\mathrm{H}(163)$ on the methyl group $\mathrm{C}(16)$, is $2 \cdot 60 \AA$ away from $O(1)$, its $\tau=3^{\circ}$, and $\Delta=83^{\circ}$. The photochemical behaviour of compound (2) is not yet fully established.

The molecules of (2) form centrosymmetric carboxylic-acid dimers (Fig. 2) with $O(2) \cdots O(3)$ $2.62 \AA$. The two carboxyl O atoms, $O(2)$ and $O(3)$, are not very distinguishable; $C(15)-O(2)$ is $1.276(2) \AA$ and $\mathrm{C}(15)-\mathrm{O}(3)$ is 1.256 (2) \AA. The same holds for their bond angles, $\mathrm{C}(3)-\mathrm{C}(15)-\mathrm{O}(2) 118.3$ (2), $\mathrm{C}(3)-$

Fig. 2. Stereo packing diagram of (2).
$\mathrm{C}(15)-\mathrm{O}(3) 119.4$ (1) ${ }^{\circ}$. However, a difference Fourier synthesis resolved only one carboxylic H atom, $\mathrm{H}(\mathrm{O})$, at $1.23 \AA$ away from $O(2)$. The hydrogen-bonding distance $\mathrm{O}(3) \cdots \mathrm{H}(\mathrm{O})$ is $1.39(4) \AA$ and the $\mathrm{O}(3) \cdots \mathrm{H}(\mathrm{O})-\mathrm{O}(2)$ angle is 180°. The carboxyl group may be somewhat disordered, but the X-ray roomtemperature data could not define this disorder more precisely. The angle between the carboxyl group and the aromatic ring is $1.4(2)^{\circ}$.

We thank Professor J. R. Scheffer and Mr N. Omkaram for their collaborative studies on the solidstate photochemistry, the Natural Sciences and Engineering Research Council of Canada for financial support, and the University of British Columbia Computing Centre for assistance.

References

Appel, W. K., Jiang, Z. Q., Scheffer, J. R. \& Walsh, L. (1983). J. Am. Chem. Soc. 105, 5354-5364, and references therein.

Ariel, S., Ramamurthy, V., Scheffer, J. R. \& Trotter, J. (1983). J. Am. Chem. Soc. 105, 6959-6960.

Ariel, S. \& Trotter, J. (1985). Acta Cryst. C41, 446-450.
Bucourt, R. \& Hainaut, D. (1965). Bull. Soc. Chim. Fr. pp. 1366-1378.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Wagner, P. J. (1976). Top. Curr. Chem. 66, 1-52.

13-Oxatetracyclo[7.4.2.0 ${ }^{3,15} .0^{11,14}$]pentadecane-6,12-dione

By M. Luyten, W. Luef, U. Beck and H. B. Buergi
Laboratorium für Chemische und Mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

(Received 11 January 1985; accepted 20 September 1985)

the identity of the title compound synthesized as a precursor for the all-cis-[5.5.5.5]fenestrane. It shows a chair-chair conformation for the eight-membered ring and envelope conformations for the two five-membered rings. The observed torsion angles agree to within 1.5° (r.m.s. deviation) with those calculated by force-field methods.

Introduction. The suitability of (2) as a precursor for the synthesis of (1) depends on the conformation of the cyclooctanone portion of (2) (Keese \& Luyten, 1984). A structure determination was undertaken to confirm the identity of (2), to determine its conformation and to compare the conformation in the crystal with that calculated by force-field methods.

(1)

(2)

Experimental. Crystallization from concentrated dichloromethane diluted with tert-butyl methyl ether at room temperature yielded single crystals as colorless prisms; D_{m} by flotation in aqueous KI; single crystal $0.50 \times 0.25 \times 0.19 \mathrm{~mm}$; Enraf-Nonius CAD-4 diffractometer; ω scan; lattice constants from 14 reflections in the range $11.8 \leq \theta \leq 15.7^{\circ} ; 2114$ unique reflections measured up to $\sin \theta / \lambda=0.5941 \AA^{-1}$ ($0 \leq h \leq 18,0 \leq k \leq 16,0 \leq l \leq 12$); 1154 with $I>$ $3 \sigma(I)$ used for refinement; 2 standard reflections, 0.7% loss; Lorentz and polarization, no absorption correction; structure solved by direct methods using the 240 largest E values ($E>1.59$) for phase determination; full-matrix least-squares refinement based on F; positional and anisotropic thermal parameters of C and O atoms, scale factor and extinction coefficient refined; H positions calculated $[d(\mathrm{C}-\mathrm{H})=0.95 \AA] ; R=0.056$, $w R=0.046$ (unit weights), $S=1.161$; max. $\Delta / \sigma=$ 0.02 ; extinction coefficient $=8(1) \times 10^{-8}$ correlated to scale factor ($c=0.70$); scattering factors and real and imaginary anomalous-dispersion corrections for neutral O and C from International Tables for X-ray Crystallography (1974), for H from Stewart, Davidson \& Simpson (1965); final difference Fourier synthesis showed max. residual density of +0.454 and $-0.213 \mathrm{e} \AA^{-3}, \sim 0.7-1.6 \AA$ from atoms of lactone group. Programs: MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982), Structure Determination Package (SDP-Plus) (Frenz, 1983); all computations on a PDP 11/34 computer.

Table 1. Positional parameters and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

$B_{\text {eq }}=8 \pi^{2}\left(U_{11}+U_{22}+U_{33}\right) / 3$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{O}(4)$	0.2480 (2)	$0 \cdot 3076$ (2)	0.4256 (3)	7.09 (8)
$\mathrm{O}(16)$	0.2239 (2)	0.4524 (3)	0.3601 (3)	9.9 (1)
$\mathrm{O}(17)$	-0.0530 (2)	0.2162 (3)	0.8138 (3)	$8 \cdot 7$ (1)
C(1)	0.1115 (2)	$0 \cdot 2064$ (3)	0.5585 (3)	4.24 (8)
C(2)	0.1978 (3)	$0 \cdot 1686$ (3)	0.5402 (4)	$6 \cdot 4$ (1)
C(3)	0.2514 (2)	0.2549 (4)	0.5467 (4)	$5 \cdot 8$ (1)
C(5)	0.2299 (3)	0.4005 (3)	0.4516 (4)	6.4 (1)
C(6)	$0 \cdot 2190$ (2)	0.4191 (3)	0.5886 (4)	$5 \cdot 8$ (1)
C(7)	0.1387 (3)	0.4660 (3)	0.6218 (4)	$6 \cdot 1$ (1)
C(8)	0.0755 (2)	0.3857 (3)	0.6085 (3)	$4 \cdot 16$ (8)
C(9)	-0.0028 (3)	0.4045 (3)	0.6819 (4)	6.0 (1)
$\mathrm{C}(10)$	-0.0707 (2)	0.3330 (4)	0.6540 (5)	6.8 (1)
C(11)	-0.0534 (2)	0.2335 (3)	0.7026 (4)	$5 \cdot 8$ (1)
$\mathrm{C}(12)$	-0.0358 (3)	$0 \cdot 1566$ (3)	0.6074 (4)	6.4 (1)
C(13)	0.0538 (3)	$0 \cdot 1281$ (3)	0.6049 (4)	5.9 (1)
C(14)	0.1216 (2)	$0 \cdot 2940$ (2)	0.6474 (3)	3.57 (7)
$\mathrm{C}(15)$	0.2137 (2)	$0 \cdot 3207$ (3)	$0 \cdot 6440$ (4)	4.48 (8)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{O}(4)-\mathrm{C}(3)$	1.469 (5)	$\mathrm{C}(6)-\mathrm{C}(7) \quad 1$.	1.512 (6)
$\mathrm{O}(4)-\mathrm{C}(5)$	1.353 (5)	$\mathrm{C}(6)-\mathrm{C}(15) \quad 1$.	1.490 (5)
$\mathrm{O}(16)-\mathrm{C}(5)$	1.207 (5)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1$.	1.530 (5)
$\mathrm{O}(17)-\mathrm{C}(11)$	1.193 (5)	$\mathrm{C}(8)-\mathrm{C}(9) \quad 1$.	1.520 (5)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.523 (5)	$\mathrm{C}(8)-\mathrm{C}(14) \quad 1$.	1.538 (4)
$\mathrm{C}(1)-\mathrm{C}(13)$	1.523 (5)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1$.	1.522 (6)
$\mathrm{C}(1)-\mathrm{C}(14)$	1.545 (4)	$\mathrm{C}(10)-\mathrm{C}(11) \quad 1$.	1.504 (6)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.491 (6)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1$.	1.492 (6)
$\mathrm{C}(3)-\mathrm{C}(15)$	1.505 (5)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1$.	1.523 (6)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.474 (6)	$\mathrm{C}(14)-\mathrm{C}(15) \quad 1$.	1.557 (5)
$\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{C}(5)$	108.1 (4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	104.4 (3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(13)$	111.8 (3)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)$	115.0 (3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(14)$	104.5 (3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$114 \cdot 1$ (3)
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{C}(14)$	116.0 (3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	113.4 (4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	105.4 (3)	$\mathrm{O}(17)-\mathrm{C}(11)-\mathrm{C}(10)$) 121.3 (5)
$\mathrm{O}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	109.8 (4)	$\mathrm{O}(17)-\mathrm{C}(11)-\mathrm{C}(12)$) 120.8 (5)
$\mathrm{O}(4)-\mathrm{C}(3)-\mathrm{C}(15)$	$105 \cdot 6$ (3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$) 118.0 (4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(15)$	$106 \cdot 1$ (3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) 112.6 (4)
$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{O}(16)$	115.4 (5)	$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	114.8 (3)
$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	113.0 (4)	$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(8)$	116.2 (3)
$\mathrm{O}(16)-\mathrm{C}(5)-\mathrm{C}(6)$	131.5 (6)	$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	$106 \cdot 1$ (3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	114.0 (4)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(15)$	$105 \cdot 9$ (3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(15)$	103.1 (4)	$\mathrm{C}(3)-\mathrm{C}(15)-\mathrm{C}(6)$	105.6 (3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(15)$	104.8 (3)	$\mathrm{C}(3)-\mathrm{C}(15)-\mathrm{C}(14)$	105.7 (3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	104.8 (3)	$\mathrm{C}(6)-\mathrm{C}(15)-\mathrm{C}(14)$	$106 \cdot 6$ (3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$113 \cdot 6$ (3)		

Fig. 1. ORTEP (Johnson, 1970) drawing of the molecule with atomic numbering.

Discussion. Fractional atomic coordinates are given in Table 1.* Bond lengths and angles involving nonhydrogen atoms with their e.s.d.'s are given in Table 2.

Stereochemistry. The relative configurations of C(1), $\mathrm{C}(8)$ and $\mathrm{C}(3), \mathrm{C}(6)$ (see Fig. 1) correspond to those expected from the chemical work (Keese \& Luyten, 1984). The two five-membered carbocycles are cis fused. The lactone is attached to the endo positions of $C(3)$ and $C(6)$ of the bicyclooctane fragment, the eight-membered ring to the exo positions of $\mathrm{C}(1)$ and $\mathrm{C}(8)$.

[^0]Table 3. Selected experimental torsion angles (${ }^{\circ}$); $M M 2$ results in parentheses
E.s.d.'s are in the range $0 \cdot 5-0.8^{\circ}$.

$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-31.8	(-33.9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(15)$	35.7	(37.2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(15)-\mathrm{C}(14)$	-24.8	(-26.3)
$\mathrm{C}(3)-\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(1)$	4.8	(5.5)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(2)$	16.3	(17.4)
C(14)-C(8)-C(7)-C(6)	32.7	(34.4)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(15)$	-37.7	(-38.7)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(15)-\mathrm{C}(14)$	27.5	(28.2)
$\mathrm{C}(6)-\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(8)$	-7.2	(-6.9)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{C}(7)$	-15.6	$(-16 \cdot 9)$
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-68.5	(-71.1)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	68.4	(68.2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-109.4	(-106.8)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(1)$	101.7	(103.5)
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	68.7	(70.8)
$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	-66.1	(-68.3)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	106.8	(106.9)
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(8)$	-102.8	(-103.1)

Fig. 2. ORTEP (Johnson, 1970) stereoscopic view of the molecular packing.

Conformation. Both cyclopentane rings of the bicyclooctane fragment are in the envelope conformation. The cyclooctanone ring shows a chair-chair conformation with approximate $m m 2$ symmetry (Table 3).

Energy-minimization calculations with the $M M 2$ force field (Allinger \& Yuh, 1981) on the observed conformation lead to a very similar structure. On average, the absolute values of the observed C -$\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles are $\sim 1^{\circ}$ smaller than the calculated ones. Correspondingly, the observed C-$\mathrm{C}-\mathrm{C}$ angles are 0.3° larger than the calculated ones (root-mean-square deviations are 1.5 and 0.9°, respectively). This indicates that the influence of molecular packing on the conformation of (2) is minimal. The packing arrangement is illustrated in Fig. 2.

A pronounced difference between observed and calculated geometries is found at the carbonyl carbon atom $C(5)$. The observed and computed bond angles and their differences are respectively: $\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ $113 \cdot 0,109 \cdot 9,3 \cdot 1^{\circ} ; \mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(16) 131 \cdot 5,126 \cdot 1$, $5.4^{\circ} ; \mathrm{O}(4)-\mathrm{C}(5)-\mathrm{O}(16) 115.4,124.0,-8.6^{\circ}$. These differences point to a systematic deficiency of the MM2 force field which has been extensively documented elsewhere (Nørskov-Lauritsen, Bürgi, Hofmann \& Schmidt, 1985).

This structure was solved during an introductory course into single-crystal X-ray structure determination.

We thank the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung for support.

References

Allinger, N. L. \& Yuh, Y. H. (1981). Quantum Chemistry Program Exchange, Vol. 13, p. 395 (IBM version). MM2. A program for general molecular-mechanics calculations, available through the Quantum Chemistry Program Exchange (QCPE), Indiana Univ., Chemistry Building 204, Bloomington, Indiana.
Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package; SDP Users Guide, version of 6 January 1983.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1970). ORTEPII. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Keese, R. \& Luyten, M. (1984). Helv. Chim. Acta, 67, 2242-2245.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nørskov-Lauritsen, L., Bürgi, H. B., Hofmann, P. \& Schmidt, H. R. (1985). Helv. Chim. Acta, 68, 76-82.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

[^0]: * Lists of structure amplitudes, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42512 (9 pp. .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

